Bacalaureat fizica
Mecanica Termodinamica Electricitate Optica


Google   



Bacalaureat fizica 2015

Termodinamica iunie 2015 filiera teoretica





Examenul de bacalaureat national 2015
Proba E. d)
Proba scrisa la FIZICA
Filiera teoretica – profilul real,
Filiera vocationala – profilul militar
♦ Sunt obligatorii toate subiectele din doua arii tematice dintre cele patru prevazute de programa, adica: A. MECANICA, B. ELEMENTE DE TERMODINAMICA, C. PRODUCEREA SI UTILIZAREA CURENTULUI CONTINUU, D. OPTICA
♦ Se acorda 10 puncte din oficiu.
♦ Timpul de lucru efectiv este de 3 ore.
B. ELEMENTE DE TERMODINAMICA Varianta 9
Se considera: numarul lui Avogadro NA = 6,02·1023mol-1, constanta gazelor ideale R = 8,31J·mol-1·K-1.
Intre parametrii de stare ai gazului ideal intr-o stare data exista relatia: p·V = ν·R·T
. I. Pentru itemii 1-5 scrieti pe foaia de raspuns litera corespunzatoare raspunsului corect. (15 puncte)
1. Concentratia moleculelor unui gaz considerat ideal (numarul de molecule din unitatea de volum):
a. creste prin incalzirea gazului la presiune constanta
b. scade prin comprimare la temperatura constanta
c. scade prin destindere adiabatica
d. creste printr-o incalzire la volum constant. (3p)
Raspuns:   c.  →(3p)
2. Relatia dintre caldura molara Cμ si caldura specifica c a unui gaz cu masa m si masa molara μ este:
a.  Cμ = c·μ    b.  Cμ = c·m    c.  c = Cμ·μ    d.  c = Cμ·m    (3p)
Raspuns:   a.  →(3p)
3. Simbolurile marimilor fizice fiind cele utilizate in manualele de fizica, unitatea de masura in S.I a marimii fizice definita prin raportul p·μ/R·T este:
a.  kg·mol-1    b.  kg·m3    c.  kg·m-3    d.  kg·mol    (3p)
Raspuns:   c.  →(3p)
4. O cantitate ν = 0.12mol (≈ 1/8.31 mol) de oxigen (CV = 2,5·R) se afla la temperatura T1 = 300K. Gazul sufera o destindere izobara in urma careia volumul a crescut de 2 ori. Energia interna a gazului in starea finala este aproximativ egala cu:
a.  250 J    b. T2 550 J    c.  750 J    d.  1500 J    (3p)
Raspuns:   d.  →(3p)
 T2 ν·CV·T2, V1/T1 = 2·V1/T2,
T2 = 2·T1 = 600K. T2,  U2 = 1500J
termod.sub.I.5.iunie.2015.f.teoretica 5. In trei butelii identice, etanse, a caror dilatare termica este neglijabila, se gasesc cantitati diferite din acelasi tip de gaz considerat ideal. Incalzind gazele, se obtin variatiile presiunilor celor trei gaze reprezentate in coordonate p-T in figura alaturata. Intre masele celor trei gaze exista relatia:
a.  m1 < m2 < m3     b.  m1 > m2 > m3     c.  m1 > m3 > m2     d.  m1 < m3 < m2    (3p)
Raspuns:   b.  →(3p) p1·V = m1·R·T/μ
m1 = p1·V·μ/R·T, m2 = p2·V·μ/R·T, m3 = p3·V·μ/R·T,
deoarece, p1 > p2 > p3, rezulta  m1 > m2 > m3
II. Rezolvati urmatoarea problema: (15 puncte)
Un recipient de volum 74,79 L, inchis etans cu o supapa, contine 90 g de gaz. Presiunea si temperatura gazului din interior sunt aceleasi cu cele ale aerului exterior si au valorile p = 105Pa, respectiv t = 27°C. Supapa se deschide atunci cand diferenta dintre presiunea gazului din interior si presiunea aerului exterior depaseste valoarea Δp = 3·104 Pa. Calculati:
a. masa molara a gazului din recipient;
Rezolvare:   m·R·T/ = m·R·T/μ μ = m·R·T/m·R·T = 30g/mol.   → (4p)
b. densitatea initiala a gazului din recipient;
Rezolvare:   ρ = m/V ≈ 1.2kg/m3.   → (3p)
c. temperatura maxima T' pana la care poate fi incalzit gazul din recipient astfel incat supapa sa ramana inchisa;
Rezolvare:   p' ·V = ν·R·T'   → p/T1 = p' /T'   p' = p + Δp.  T' = 330K.   → (4p)
d. masa de gaz care ar trebui eliminata din recipient, pentru ca presiunea sa ramana p = 105Pa, atunci cand temperatura gazului devine T" = 540K.
Rezolvare: p'·V = m'·R·T"/μ  m' = p·V·μ/R·T"
Δm = m - m' = 40g.   → (4p)
III. Rezolvati urmatoarea problema: (15 puncte)
termod.sub.III.iunie.2015.f.teoretica O cantitate ν = 1,5 mol de gaz ideal monoatomic (CV = 1,5·R), aflat initial in starea 1 la temperatura t1 = 47°C, evolueaza dupa un proces termodinamic ciclic 1·2·3·1 reprezentat in coordonate p - V in figura alaturata. Se stie ca presiunea in starea 2 este p2 = 2·p1. Calculati:
a. temperatura gazului in starea 3;
Rezolvare:Lciclu = p1/T1 = p2/T2,   → (3p)
→ (3p)
T2 = 2·T2 = 840K.
Teorema lui Thales: V3/V1 = p2/p1 = 2
Pentru transformarea 2 → 3,  V3/T3 = V1/T2,   → (3p)
T3 = (V3/V1)·T2 = 2T2 = 4·T1 = 1280K.   → (3p)
b. lucrul mecanic total schimbat de gaz cu mediul exterior in decursul procesului ciclic;
 Lciclu = L12 + L23 + L31,  Lciclu = 0.5· p1·V1
p1·V1 = ν·R·T1,  Lciclu = 2000J.  → (4p)
c. caldura schimbata de gaz pe transformarea 3 → 1;
Rezolvare:   Q31 = ΔU31 + L31, ΔU31 = ν·CV·(T1 - T3)
  L31 = -1.5·p1·V1 ,  Q31 ≈24kj.   → (4p)
d. randamentul unui ciclu Carnot care ar functiona intre temperaturile extreme atinse in procesul 1 → 2 → 3 → 1
Rezolvare:  ηc = 1 - Tmin/Tmax = 1 - T1/T3 = 0.75 = 75%.   → (4p)






boltzmann viteza

logo
Bacalaureat fizica

Noutati
Sunt date solutiile la toate subiectele de fizica din anul 2014
Ex:
Mecanica 2014


trans.izocora
dilatarea

sus

« Pagina precedenta      Pagina urmatoare »

Postati:

Facebook widgets   Twitter widgets    Google plus widgets    linkedin